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Abstract. Exact upper and lower bounds are obtained for the class of stochastic processes 
described in terms of Pauli master equations with tridiagonal infinitesimal stochastic matrix. 
The sum of time-scales, each equal to a reciprocal eigenvalue of this matrix, is expressed 
in terms of the elements of arbitrary matrices. This forms the upper bound on the longest 
time-scale, while the same quantity, divided by the number of time-scales minus one, is 
the average time-scale, and forms a lower bound. The longest time-scale determines the 
rate of approach to equilibrium. The result is valid for any number of states, and in 
particular provides recurrence criteria for the infinite chain, which are consistent with 
known results. 

1. Introduction 

A wide range of physical phenomena are described in terms of the master equation 
in the simple form due to Pauli (cf Penrose 1979, Schnakenberg 1976). This includes 
processes such as relaxation, diffusion, reaction, growth, and phase transition. In most 
of these cases it is the longest time-scale in the model which determines the properties 
of most interest. On the contrary, the existing exact bounds apply to the shortest 
time-scale. The present work concerns exact bounds, both upper and lower, on the 
longest time-scale. For any master equation they may be used to estimate accurately 
the time needed to reach equilibrium, i.e. the rate of the processes concerned where 
these are determined by a long time-scale. 

In 0 2 we first provide definitions and mention some established properties of 
relevance. These are equivalent to the ergodic theorems in discrete time stochastic 
theory (Cox and Miller 1972, Seneta 1973). Our main result is a theorem concerning 
finite, tridiagonal, infinitesimal, stochastic matrices, and is obtained by recursion 
methods in § 3. This theorem provides the invariant coefficients of the characteristic 
equation in terms of the elements of the matrix. In § 4 it is applied to determine 
the location of the smallest eigenvalues. In the present paper this application is set 
in the context of systems of linear, homogeneous, first-order differential equations. In 
the physics literature these are most frequently referred to as the master equation 
(Penrose 1979, Schnakenberg 1976), while in the theory of stochastic processes (Cox 
and Miller 1972, Seneta 1973) they are known as the continuous time Kolmogorov 
equation. These equations in our case correspond to a one-dimensional arrangement 
of transitions between quantum states. There are models of physical relevance in this 
class. As far as we are aware the theorem is new. In any case, it does not appear in 
the standard references (such as Householder 1975, Marcus and Minc 1964, Muir 
1960, Seneta 1973). Of course, recursion methods for tridiagonal matrices are well 
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known (cf Cox and Miller 1972, Karlin and McGregor 1957a, b, 1958, Muir 1960) 
and have been applied to infinite systems, but not, to our knowledge, adapted to finite, 
infinitesimal, stochastic matrices, which adds an amount of complication. Neither does 
this theorem appear in standard applications in physics. We have applied it to Monte 
Carlo experiments (Larsen 1983a) and to classical diffusion in arbitrary potentials 
(Larsen 1983b). 

2. Preliminary definitions 

Let a denumerate a basis in a Hilbert space of dimension n. Let W, denote ensemble 
probabilities of a system being in the pure quantum state la), and let 

e = n  

o s  wa s 1, c W,=l .  
, = I  

The master equation is defined in terms of an n X n infinitesimal stochastic matrix L, 
with elements denoted L,,, and forms a set of n linear, homogeneous differential 
equations of first order in the time t 

dW, P = n  -- - - c LOW,. dt  p=1 

We assume that the matrix L does not depend on the time. This is the simplest form 
of the master equation and does not include memory effects. 

The second part of (2.1) is satisfied if at all finite l 

a = n  

La, =o. 
a = l  

Then there is at least one zero eigenvalue of L. A sufficient condition for the existence 
of a stationary state, in which W: is a set of time independent probabilities, is that 

(2.4) 

which has solutions with non-vanishing probabilities when (2.3) is assumed. Combining 
the two shows that the condition of detailed balance (DB) 

(2.5) 
is also sufficient to assure the existence of such a solution. Neither of these, however, 
assure that the solution is unique, nor that it satisfies the bound (2.1). Keizer (1972) 
has shown that if 

Laa>O and La,sO, for all a # j3, (2.6) 
then the real parts of the eigenvalues of L, denoted by I,, where p = 1 , 2 , .  . , , n, are 
bounded, 

where max La, is the largest diagonal element of L. This is a sufficient condition that 
the solution will satisfy (2.1), if the initial probabilities do. If all quantum states are 
connected by means of a chain of non-vanishing elements of L, then (Schnakenberg 
1976) there is only one zero eigenvalue, the stationary solution Wx is unique, and 
reached in a finite time if n is finite. The bound (2.7) does not allow an estimate of 

La, w", = L,a w", 

0 S Re 1, d 2 max La,, (2.7) 
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how long this time is, as it depends on the real part, which is smallest. The solution 
in terms of the eigenvalues is well known. If the eigenvectors are linearly independent 
it has the form 

p = n  

p = 2  
W, = w," + C c,, e-'p', 

where the coefficients cup depend on the initial condition. If not, there will occur 
polynomials of t in their place. If the DB condition (2 .5 )  is also assumed, then (cf § 4) 
all eigenvalues are real, and the solution becomes a monotonic relaxation, which can 
be characterised by a set of n - 1 time-scales 

rp=l/lp. (2.9) 

(2 max L,,)-' 6 T~ < m, (2.10) 

but there is no finite upper bound. The rate determining time-scale is the largest, 
which we assume to be T ~ .  It is, therefore, not possible on the basis of these results 
to assert that the equilibrium, although it exists, will be reached within times of physical 
relevance. 

According to (2.8) then 

3. A theorem on the characteristic equation of certain tridiagonal matrices 

Let A be a tridiagonal matrix 

\ 
(3.1) 

of order n, and let P,  = y, = 1. For n a 1 the characteristic polynomial may be written 
in the form 

m = n  

& , ( A )  = Det(hZ-A) = 1 F',")h" = F',O) +F',')h t 
m=O 

Define 

A o = B o =  1.  
Let 

F',") Y1Y2 * ynGLm), 

1 for n =0, 
for n > 0. 

G',O) = { 

. .  . . .  

We then prove the following theorem. 
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+ ” ( A )  = Det 

Theorem. If 

a ” + Y ” + P Y - I  = o  f o r 2 ~ v ~ n - 1 ,  

a ]  + 
and 

a, + P,-1 = 0, 

then G ”  satisfy the recursion relations 

A-a, -P1 

-YI A - a 2  -Pz 
(3.10) 

Y v - 2  A-a,-, -Py--l 
?”-I  A -a, ,  

- 

- 

(3.7) 

(3.8) 

(3.9) 

(3.11) 

(3.12) 

4 ] ( A ) = A  - a I .  (3.13) 

Inserting (3.7) 

(3.15) 

= & ( A ) +  Y f 1 4 n - 1 ( A ) .  (3.16) 

Inserting this repeatedly in the right-hand side of (3.15) gives 

& ( A  = ( A  + P n -  I )  6,- I ( A  ) + A Y n -  1 4 n - * ( A  1 
= P n -  1 6 n -  1 ( A  1 + A [ 4 n -  I ( A  1 + Yn- 1 6 n - 2 0  ) + Y n -  1 Yn-24, -3( A 1 + . . ‘ 

+ Yn-1 . . . Y r 4 1 ( A ) 1  

is given by (3.13) and (3.8) 

& ( A )  = A  + Y1= 6 l ( A ) .  

(3.17) 

for n 5 3. 

(3.18) 
Hence 4“ for U < n are the characteristic polynomials of the matrix which would have 
corresponded to Y being the last column and the elements of this column satisfying 
(3.8) instead of (3.7). Adding all rows of the determinant of & ( x )  to the first row, 
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by (3.7), produces A in all the positions in the first row. Hence $,, contains a factor 
A for all n L 2, which corresponds to an eigenvalue zero. Thus 

FLo’ = 0 for n 3 2, (3.19) 

and of course 

F y  = - C Y 1  = 71. 

Now define polynomials 

F‘,“’(A) 

by putting 

&(A)=F!,”’ +AF‘,1’(A) 

and in general, for 1 G m S n - 1, 

F‘,“’(h) =F‘,“’ +AFkm+” ( A ) .  

Here 

F‘,“’ (0 )  3 F!,””, 

and 

F‘,“’ ( A )  = F‘,“) = I. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Inserting in (3.17), using (3.19), and cancelling an overall factor of A then gives, for 
n S 3 ,  

F,”’ ( A )  = ~ n - l F i ~ ’ l  ( A )  + AFi!j1 ( A )  + Ayn-lFj!’2 ( A )  +. . .+Ay,-, . . . y&l) ( A )  

+ A Y P I . .  . Y 2 +  Y n - I Y n - 2  * .  . Y 2 Y I .  (3.26) 

Setting A = 0 gives, according to (3.24), 

F‘,“ =/3n-IF!,!?l + yn- l  . . , y l .  (3.27) 

Repeating the process, by inserting (3.23) in (3.26), using (3.27) to cancel terms 
independent of A, then gives subsequently 

n (3.28) F(2’ =/3  ,,-, F(2)  +F(” + Y~-~F! , ‘ . !~  +. . . + ynel  . . . y3Fi1’ + -yn-l . . . 72. 

By (3.25) FI” = 1, so 

Proceeding to the mth term 

(3.29) 

(3.30) 

This follows since the string of Fj“-” will always terminate with the FF-;’’ = 1, which 
may be regarded as multiplying the last string of yn- l  . . . ym. When m = n, according 
to (3.23) and (3.25), the first term on the right-hand side is absent, while the sum 
only contains one term. Hence 

F‘,“’ = F(fl- l ) ,  fl-1 (3.31) 
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which is consistent with (3.25). The solution of (3.30) is (see e.g. Bender and Orszag 
1978) 

using (3.31) as boundary condition at m = n. Using (3.5) this becomes 

By the equivalence of the sums 

. .  
k = m - 1  r=m-I  r=m--l k=r  

this produces the recursion (3.9). 
It remains to show how to start the recursion for m = 1. From (3.27) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

According to (3.2), (3.7) and (3.8) 

42( A ) = A (FYI + ) = ( A  - a 1) ( A  - a2) - P y1 = A - A ( LY + a 2 ) .  (3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

As this is generated by starting with (3.6) in (3.9) the proof of the theorem is complete. 

4. Results 

The invariant coefficients of the characteristic polynomial (3.2) may be expressed in 
terms of the eigenvalues. It is straightforward to obtain by means of the recursion 

Since lI  = O  we have 
p = n  

p = 1  
FLo’ = (-l)n Det(L) = (-l)n fl I ,  =0,  (4.2) 
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and the next in order are 

p = 2  

These give the sum of the time-scales 

From (3.9), for 1 =G S=G n, 

and next 

(4.3) 

(4.4) 

(4.5) 

Defining 

we have, using the definition (3.3) and ( 3 . 5 ) ,  

( J n - J s ) J s  

S = i  PsAsJn ' 

s = n - 1  

r = -  C 
In terms of the elements of the tridiagonal L 

(4.9) 

(4.10) 

If all the off-diagonal elements are negative, according to (2.6), then r is non-negative, 
in agreement with (2.10). In any case, r is real, the eigenvalues occur in complex 
conjugate pairs. 

Let us define an average relaxation time by 

(4.11) 

and let us assume the time-scales are arranged in order of magnitude 

Re r2 2 Re r3  3. . . L Re 7,. (4.12) 

Under the condition (2.6) all these are positive, so 

Re r 2 S  r 6  ( n  - 1)  Re r2. (4.13) 

Consequently, the largest time-scale is bounded as follows: 

? s R e  r 2 s  r. (4.14) 
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The lower bound is sharper than (2.10) since 

(2 max Leo)- '< Re T,, S ?. (4.15) 

An upper bound has not been established before. When the longest time-scale Re  72 

becomes much larger than all the others the lower bound becomes much better than 
(2.10), and for finite n it  is of the same order as the upper bound in the quantity that 
becomes large. 

If a link in the chain of matrix elements is broken by letting a pair become zero, 
then r becomes infinite, in agreement with the existence of a second zero eigenvalue. 
The two segments can be considered as above, and may have different time-scales. 
This case presents no loss of generality. 

If the DB condition is also assumed, then there exists an orthogonal transformation 
matrix U, with elements 

u a p  = aa,/JX, (4.16) 

whereby L is similar to a symmetric matrix M, with elements 

M~~ = w:: W: ) I / *  = L ~ ~ (  W: / W, 0 ) 1/2=M 13a. (4.17) 

The eigenvalues are therefore real. In this case we may simplify the expressions. We 
get 

Define Jo = 0 
k = r  

= wp(J,-J,) = 1 WE. 
k = s + L  

Then, in terms of the elements of L or M, 

(4.18) 

(4.19) 

(4.20) 

For real time-scales the bounds become 

(2 max Lea)-' s 7, s ? s T* s 7, (4.21) 

where T~ is the largest time and r,, is the smallest time. The sums present no 
computational problems. 

For infinitely large n the model corresponds to the birth-and-death problem. In 
this case the conclusions about the possibilities of reaching the equilibrium may not 
apply, but we can use the bounds on Re r2 to investigate the possibilities. If r, and 
consequently Re remains finite, then equilibrium can be reached in a finite time. 
If d diverges, then so does Re 72, and equilibrium cannot be reached in a finite time. 
The behaviour of 7 depends on the function J5, defined by (4.8) and (3.3) in terms of 
the matrix elements. This is finite and non-negative by definition of the model, now 
including (2.6), but not necessarily DB. For 1 G s S n - 1 J,  < J,,. From (4.9) 

(4.22) 

Consequently 7 is finite, and equilibrium reached in a finite time of the order Re f 2 ,  
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provided the infinite sum is convergent, 

p L  < 03. 
s=l lPslAs 

(4.23) 

Karlin and McGregor (1957a, b, 1958) showed that the stochastic process is null- 
recurrent if and only if 

and lim J,, = 03. 
1 f -=a 

s=l lPsIAs 

We conclude null-recurrence from the bounds (4.21) if for n -f 03 

(4.24) 

(4.25) 

Under the condition of DB the J,  must all be finite, as the J,, is the sum of probabilities 
in (2.1) divided by Wp. Otherwise this need not be the case. 

The simplest model of diffusion corresponds to equal matrix elements 

P” = y” = P. (4.26) 

We get A k  = 1 for all k,  and J, = s. Hence 

(4.27) 

? =  (1/6IPl)(n+l) .  (4.28) 

Since both diverge for n -f CO no equilibrium is ever reached. The diffusion process is 
null-recurrent, as its mean recurrence time is infinite. 

5. Conclusions 

We have considered the class of models described in terms of master equations with 
constant, tridiagonal infinitesimal stochastic matrix L. Despite its simplicity, this 
equation is of considerable physical relevance. We obtained exact upper and lower 
bounds on the longest time-scale, expressed in terms of the elements of L for arbitrary 
models in this class. It then becomes possible to determine explicitly the rate controlling 
time-scale in all processes of this kind, whereas it has previously only been possible 
to construct a lower bound on the fastest time-scale, which has no such significance. 
The results apply to any number n of pure quantum states, and are easily computable. 
In particular, statements about the recurrence properties in models with n infinite can 
be constructed on the basis of an analysis of the convergence properties of the bounds. 

The bounds are both proportional to the sum of time-scales, and are therefore 
both proportional to the mean time-scale +, for which an exact expression is given. If 
the principle of detailed balance is introduced in the matrix L it becomes possible to 
express these quantities in terms of the equilibrium probabilities. This opens up the 
possibility of numerous applications in quantum and classical statistical mechanics. 
Some examples are discussed in Larsen (1983a, b). 

The standard theorems on the location of the eigenvalues of matrices (cf Marcus 
and Minc 1964, Muir 1960) concern the complete spectrum. They do not provide 
information about the separation of eigenvalues within the spectrum. This may also 
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be said of the ergodic theorems of stochastic theory, which are obtained from the 
Perron-Frobenius theorem (Seneta 1973). These concern the conditions that the unit 
eigenvalue is simple, and are equivalent to  statements about the zero eigenvalue in 
the continuous time models (Keizer 1972, Schnakenberg 1976). Although these 
theorems may show that the infinite time limit provides a unique equilibrium state, if 
L is irreducible as we also assume here, they do not determine how long it will take. 
This requires a statement about the next-to-smallest eigenvalues in the spectrum, the 
smallest being zero. For any infinitesimal stochastic matrix these are inside the 
spectrum, and the zero eigenvalue keeps all general bounds equal to zero (cf § 2) and 
therefore useless for this purpose. This presents a problem which, to our knowledge 
was not addressed before, at least not in the present context. Because of this we have 
not found earlier work which could be of assistance in constructing a shorter proof 
than the one given in § 3, which relies entirely on elementary algebra. 
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